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Abstract. A reasonable q-deformed differential is defined. A set of operation rules azt 
constructed for the q-defomd formal pseudo differential operators. The complete procedure 
of wnswcting the q-deformed MV hierarchies and their inlinite conservation laws is given. 
As an important example, we obrain a detailed swcNre of the simplest (32) system, i.e. the 
q-deformed Kdv equations. 

1. Inhoduction 

Recently, the (I+l)-dimensional Korteweg-de Vries (KdW hierarchy [ I ]  has attracted 
considerable attention among theoretical physicists. The results of research demonstrate that 
the KdV hierarchy is closely related to the following popular topics: (1) matrix models [2] and 
non-perturbative treatment of Z-dimensional field theories [3], (2) theories of 2-dimensional 
gravity coupled to matter systems [4], (3) 2-dimensional topological field theories [SI and 
(4) conformal field theory [6] and W algebras ~[7]. The basic equations goveming non- 
perturbative 2-dimensional gravity coupled to minimal models are the differential equations 
of KdV hierarchy. The partition function and the correlation functions of the 2-dimensional 
topological gravity coupled to minimal models are conjectured to be described by the Kdv 
hierarchy. The KdV hierarchy shows the miraculous power and mysterious relations in 
treatment of different mathematics and physics objects. 

On the other hand, the interest to the quantum deformation (so-called q-deformation) 
of Lie algebra (the quantum group) has been growing in the physical and mathematical 
regions [8]. The idea of quantum Lie algebras originated from the study of the solution of 
the quantum Ymg-Baxter equation for the integrable lattice models [9]. The representation 
theory of the q-deformed simple Lie algebras has been investigated widely [IO]. One of the 
methods which is well worth OUT attention in the study of quantum groups is the q-harmonic 
oscillator realization of quantum groups [ll]. Several authors have extended the definition 
of q-differentiation [ 12-13]. 

The success of quantum groups stimulates people to look for new objects which can 
perform the analogous so-called q-deformation. For example, the qdefomed Virasoro 
algebra has been studied in [I41 [E] and [16]. Chaichian et al even researched the .q- 
deformed KdV system 1171. However, it is hard to say that all of these attempts has been 
accomplished perfectly. 

It was always significant if a new kind of intepble  system could be discovered. In this 
paper we shall conduct a new investigation about q-deformed KdV hierarchies by defining a 
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suitable q-differentiation. Through building a set of complete operations of the q-deformed 
formal pseudo-differential operator and using the Lax pair, we present the constructing 
program of q-deformed KdV hierarchies and obtain a q-deformed generalization of the 
ordinary KdV equation. We conjecture that the q-defonned KdV hierarchies thus produced 
is a new kind of integrable system. 

2. The q-deformed formal pseudo-differential operator 

At first we introduce two operators, Q and 3. which are defined as 

Q f @ )  = f ( z q )  
3fCz) = qZaf(z) 

where 8 = $ and q is called a deformed parameter. To avoid complexity, q is limited to be 
a real parameter which is not - 1. One can rewrite the operator Q as a formal differential 
operator with infinite order of the ordinary differential operator a, 

therefore 

where 

E = 1 -~q .  

The operator g can also be rewritten as an infinite order differential operator 

One can prove that the operator 3 is indeed same as the operator Q, 

g = Q .  (2.7) 

This proof is given in appendix A. The commutative relation between z and Q (or 8 without 
distinction) is described by the q-deformed commutator 

IQ, zlq = 0 (2.8) 

where 

[ A ,  B ] ,  = A B  - r B A .  

When r = 1, we omit this 1 and denote it simply as 

(2.9) 

[A ,  B ]  = A B  - B A  (2.10a) 
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and when r = -1  it becomes the ordinary anticommutator 

{ A ,  B ]  = A B  + BA. (2.1 Ob) 

After owning the infinite-order differential operator Q, we define the q-deformed 
differential operator [I81 

(2.11) 

which is also a formal differential operator of infinite order. It is easy to see that 6 tends 
to a when q tends to 1: 

(2.12) 

The commutative relation between Q and b is also described by the q-deformed commutator 

[b. elq = 0. (2.13) 

According to the definition (2.1 I )  of b, one.can prove the q-deformed Leibniz rule 

&f (z)&)) = (fif(Z))g(z) i- (Q-'f (z))(b,p(z)) (2.14) 

which can be expressed in an operator form 

b f = f ' 0 . - 2 ) b  + f'1.0'. (2.15) 

Here o represents a fact that 6 before o must acts on the other functions behind f(z). In 
the above formulas one introduces the symbol 

f'"''"'(z) = (b"Q'"f(z))  (2.16) 

where B and Q in the parentheses do not act on the functions behind f ( z ) .  For example, 
one has z(',') = 1. Using the formula (2.15) one gets the q-deformed commutator between 
the q-deformed differential operator b and the coordinate variable z, 

[b, 4 - 2  = 1. (2.17) 

Applying the q-deformed Leibniz rule (2.15) to the high-order case of the q-deformed 
differential operator, we obtain 

where 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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and 

IO]! = O! = 1. (2.22) 

In (2.21), the symbol 

Lm] = ( q m  - q - m ) ( q  - q-y-1 (2.23) 

is just the ordinary q-deformed one, often used in references. One can generalize (2.18) to 
the case of negative n, 

Specially for the case of n = - 1, one has 

g-1 o f  = f10.2)fi-I - q f  -2 (1.4)b-2 +q-5f(2,61t)-3 -,  .. . ,(2.25) 

It is necessary to note that q-deformed differential operators differ from the ordinary 
difference operators. Although the q-deformed differential operator seems a difference 
operator at the level of the first order form, the second order q-deformed differential operator 

(2.26) 

differs from a second-order difference operator, due to its equal-ratio distances between 
points and its non-standard coefficients. In fact the qdeformed differential operator is 
called the q-difference. Up to now we have described all of operations needed to construct 
q-deformed KdV hierarchies. 

A q-deformed KdV hierarchy is described in terms of the q-deformed pseudodifferential 
operator which is given by a formal expression 

M 
K =  k,,* (2.27) 

where the coefficients are functions k,(z) in a variable z and 5 is defined as (2.11). 
The multiplicative rule of two q-deformed pseudo-differential operators has been given 
by formulas (2.18) and (2.24). One further introduces the decomposition 

(2.28) 

(2.29) 

where 'cs' stands for the q-deformed residue. 
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3. The q-deformed KdV hierarchy and the q-deformed KdV equation 

The Nth q-deformed KdV hierarchy consists of an infinite set of commuting qdeformed 
differential equations for the coefficients V,,(z, tp) (n = 0, 1, . . . , N - 1) of a q-deformed 
differential operator L of order N that has been put in the canonical form 

N-1 

L = bN + V " P .  
"dl 

In the algebra of q-deformed pseudo-differential operators L has an unique Nth root L1", 
and in the Lax representation 1191 the pth Row of the N t h  q-deformed KdV hierarchy (called 
the ( p ,  N )  system) is given by 

where tp  are called time parameters. Since L commutes with LPlN, one has 

[ L y ,  L] = [L ,  L?]. (3.3) 

But since from the LHS above, the commutator can have only positive powers of b, and 
since from the RHS above the highest-order term is only up to one of EN-', the expression 
(3.3) is only an order-N - 1 qdeformed differential operator without negative powers of 
6. When expanded in powers of 6 &is operator equation (3.2) gives rise to a single 
q-deformed differential equation for each of the coefficients V,. The Lax pair structure of 
qdeformed KdV hierarchies is the first indication that they may be completely integrable 
systems. 

The simplest system of the ( p ,  N) qdeformed KdV hierarchies must be the (3.2) system 
which is known as q-deformed KdV equations. Let us take this system in order to illushate 
the above procedure. This model is obtained by taking L to be the second-order qdeformed 
differential operator 

(3.4) K = b2 + VI (2. r)B + V&, t ) .  

K'12 = 6 + W-nb-n. (3.5) 

The formal expansion of LiI2 in powers of D is given by 
m 

n=O 

Since one needs only the first five coefficients of W-"~ in the later qdeformed KdV equations, 

(3.10) 
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The first formula of (3.6) is regardea as one of the methods to calculate operator (l+Q-')-'. 
The q-deformed differential operator needed in the (32) system is Ly. Owing to the 
identity (3.3). one needs only the first two terms of the qdeformed pseudo differential 
operator L?'~, 

K3/' = U-, B-I + U-2d'" + . . . (3.11) 

where the coefficients (1-1 and U-2 are given by the expressions 

(3.12) 

(3.13) 

Now we can obtain the q-deformed KdV equations by using equations (3.2), (3.3) and (3.1 l), 

By using equations (3.12H3.13) and (3.6H3.10). the right sides of the equations (3.14) 
and (3.15) can be finally expressed in terms of pure VI and Vo. Because the q-deform9 
differential operators are not the ordinary difference operators, the q-deformed KdV equations 
are not the ordinary differencing of the ordinary KdV equation. 

4. The expanding expression of the q-deformed differential operators 

Usually we know well the ordinary differential operators and are not familiar with the q- 
deformed differential operators. In this section our main task is to present various kinds of 
q-deformed operators in terms of ordinary differential operators. From the definition (2.1) 
of Q, we have 

We therefore obtain 

As for the operator d, according to (2.11), one gets 

(4.3) 
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which can be expanded as 

and finally one obtains 

Here we have introduced the ordinary Gamma function 

r(n + 1) = n r ( n )  
r (n  + 1)  = n! (n 0) 

(-1y r ( -n)  = -r(O) n! (n 2 0) 

and a q-deformed Gamma function 

(4.7) 

(4.9) 
(4.10) 

(4.11) 

(4.12) 
(4.13) 

(4.14) 

where the r(0) is an infinity which is a formal symbol and the F(0) is to be determined. 
Defining 

one has 

(4.15) 

(4.16) 

The above formulae are &ady for extending the expansion (4.8) to the case of negative 
powers of the qdeformed differential operator. We find 
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A task is to determine the quantity r4. Let us inspect a simple case 

(4.18) 

(4.19) 

where 

(4.20) ~~~ . o = 9-2 - 1. 

After moving the differential operator from right to left side, we obtain 

where 

and 

It is easy to obtain the inverse of b from (4.21): 

Comparing the above result with the gened expansion (4.18). one finds 

(4.21) 

(4.22) 

(4.23) 

(4.25) 

After getting the expression for expansion in terms of the ordinary differential operators, 
one can take the ordinary residue 

resB = b-l (4.26) 

for an ordinary formal pseudo differential operator with infinite order at both limits: 
m 

B = bnan. 
n=-w 

(4.27) 



Quantum deformation of Kdv hierarchies 2397 

According to this definition of the ordinary residue and the results of (4.18), one can 
obtain 

(4.28) 

5. The infinite conservation laws 

One of the most important properties of some integrable systems is that they possess 
infinitely many conservation laws. We shall prove in this section that the q-deformed 
KdV hierarchies have infinitely many conservation laws. Our method comes f" the one 
of Drinfeld and Sokolov. Since the cases are very similar, the reader can refer to [20] for 
details. We can prove that the flows determined by the Lax equations commute with one 
another. If A is a q-deformed differential operator which satisfies the Lax pair equation 

where L is a q-deformed differential operator (3.1), then one has 

Let us consider the equations 

aL 
at -= [M+, L ]  M = Z C ~ L ' ' ~  

and 

It can be verified that 

a L  aL 
atat atat  
-- _ -  

(5.2) 

(5.3) 

(5.4) 

(5.5) 

which demonstrates the consistency of the q-deformed KdV hierarchies. This proof is given 
in appendix B. 

Drinfeld and Sokolov have pointed out that if P and Q are formal ordinary pseudo 
differential operators, then res[P, Ql is a total derivative of some differential polynomial 
in the coefficients of P and Q. This conclusion is also suitable for the q-deformed formal 
differential operators, since they can be expanded as series with positive and negative infinity 
orders of ordinay differential operator 

m m 
P = &am Q =  $a'. 

m=-m m=-m 
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According to the result of Drinfeld and Sokolov one then gets 

where 

$;I = (a'z), 

Taking the ordinary residue on both sides of equation (5.2) one obtains 

Integrating it and choosing suitable boundary condition one obtains 

Therefore we see that for any integer r, the residue 

Hrlk = ESL'" 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

is a density of conservation law for the Lax equation. Of course, nonhivial conservation 
laws 

correspond only to numbers r not a multiple of k. If one knows the expansion expression 
of the flows in terms of the q-deformed differential operators 

L"' = a,-,LY 
n=-m 

(5.14) 

one can obtain from equation (4.18) the density of the conservation law in terms of the 
coefficients of the expansion expression 

The existence of infinitely many conservation laws of the qdeformed KdV hierarchies is the 
second indication that they may be completely integrable systems. 

An important example is for the q-deformed differential operator of order two 

L = K = a +  v,E+ v,. (5.16) 
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We hope to obtain the recursion formulas of the so-called q-deformed Gelfand-Dikii 
potentials RI and Sf, which are relevant to the nontrivial densities of conservation laws 
of the first order formalism and defined as 

. ,  (5.17) I -  ' K - 3 = R f B - ' + S f b - 2 + . . . .  ~ . 

~ 

From the obvious identity 

[K ' - f ,  K] = 0 (5.18) 

one gets 

On the other hand one has 

(5.21) /-f K Y f  = i ( K +  , K ] +  +(K!-', K}+. 

Having performed 

we obtain 

which are just the recursion formulas for RI and Sf with the initial values 

Ro = 1 so = - WAO.2) (5.25) 

where WO is given in equation (3.6). Using these recursion formulas for 'the case 1 = 0 one 
can again obtain the results 

RI = W-I and S I  = W-z (5.26) 

where W-I and W-2 have been given in equations (3.7) and (3.8). 
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6. First-order formalism of q-deformed KdV equation 

The form (3.14-15) of the q-deformed Kdv equations is difficult to understood. In order 
to compare it with the ordinary KdV equation, we must inspect the difference between the 
ordinary ~ d v  equation and its q-deformed version when the deformed parameter q lends to 
1. Letting q = 1 - E, up to the second order of infinitesimal parameter E, one has from 
(4.2) that 

(6.1) 2 2 2  E p = 1 - Enza + -(n(n - o z a  + n z a ) + 0cE3) 2 

and from (4.8) up to the first order: 

Bm = am + E(mzam+' + im(m - i)am) + o(2). (6.2) 

Then one obtains 

= am + (&n - 2n - i)am + (m - n)zam+l) + o(2). (6.3) 

Since the first equation (3.14) of the q-deformed KdV equations becomes 

one learns that VI is a quantity of the same order as E. Using (6.3) one can simplify the 
relations (3.6-10) and (3.12-13) up to the first order in E 

and 

(6.10) 
(6.11) 

Substituting these quantities into the q-deformed KdV equations, we obtain their first-order 
form 

U-, = ;vo' + $V[ - 4 v o v ;  - ;EZVoV; - AV;" - &vd' - $"ZV;; + O(E 2 ) 

U-2 = -x vovo' - $ v; + O(E) 3 

(6.13) 

(6.14) 
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Now we expand VO and V, in e 

vo = xo + E X 2  v, =EX,.  

Equations (6.13H6.14) become 

X o  = i ( X r  + 6XoX;) 
X I  = +Z(X:  + 6XoXb) 

(6.15) 
(6.16) 

and 

X z  = $(X;” + 6 X o X ;  + 6XhX2) - :XhX{  - 2X 4 0 1  X” - LX”” 8 1  

(6.17) 

The above second equation is total differential XI = 2 ~ x 0 ,  its solution is X I  = 2zXo+ f (z) .  
For convenience we only consider the case of f ( z )  = 0, we have finally 

+ i z x r  - f X f  + 3 p X o  12 - z z x o x ; .  3 

X z  = $ ( X y  + 6XoX; + 6XhXz) - i ( X f  + 3xoxA). (6.18) 

Equation (6.15) is just an ordinary KdV equation. The first order q-deformed modification 
Xz can be solved from (6.18) and X I  is given by 22x0. 

7. The,.conservation quantities of the first-order q-KdV equation 

Up to the first order 

r , = i + E  (7.1) 

and from equation (5.15) 

resL”’ = (t + €)U,+] - ~ E Z U , + ~  + 0(e2)  I (7.2) 

therefore the densities of conservation laws are 

~ ~ - 1 1 2  = re“’-’’’ = (I + E ) R ~  - ZEZS~ + o(2). (7.3) 

Let us expand them in powers of the q-deformed infinitesimal parameter B .  Let 

(7.4) 
(7.5) 

From the recursion relation (5.23) of RI one has for the zero order of E 

h, = -L7’ 2 1  0 . 6 )  

and for the first order 

(7.7) 
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Due to 

H1-1/2 = .RI  + E ( Z R i ) '  

we have 

From (3.15). (3.11) and (5.17) one has 

One can rewrite the equation of motion as 

avo s 
at s vo - = (-[:(I -26)H5/23 

The conservation quantities are 

.. r 

8. Discussion 

(7.23) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

The qdefomed KdV equations (3.14-15) are in fact non-linear integrable evolution eqUatiOnS 
with q-differences. Their Lax pair structure and the existence of their infinitely many 
conservation laws are two strong indications that these systems are completely integrable. 
In order to prove reliably that the 9-deformed KdV hierarchies are completely integrable, 
however, we must find their Poisson brackets and prove that these infinitely many 
conservation laws are in involution from each other. If we find the Poisson structure 
of the q-deformed KdV hierarchies, we shall know the true q-deformed Virasoro algebra 
and even the qdeformed W algebras. This is a very tempting and yet not a light problem. 
We are working on this subject matter. Therefore our investigation is only preliminary and 
a considerable number of new interesting problems are waiting to be studied. For example, 
how to find their solutions, how to find their applications in mathematics and physics. 
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Appendix A 

Proposition A. operator Q is equal to operator 5. 

Proof 2. It is very interesting and useful to give a direct proof that the expansion 

is equal to the expansion 

Letting 

and using Z.8 = azn - nz"-', we get the recursion formula 

+ (n + I )  ai!;" = 

and then 

a:) =, c fi il. 
1 1 ,  4 s - c i m = n - l  I=] 

Therefore Q can be expressed as 
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where 

Using the recursion formula (A.2), we obtain 

bi (") = -(bt-" n + b(n-l)  , + . . . + by-") ( A 6  

= n !  c n ( n  - k - & ) - I .  (A.7). 

n f i  
"-1 

O ~ ' . ~ i , . , E . - . < i , ~ i " = i  x=a 

On the other hand; if we assume 

'we can rewrite e" as 

Using Ing (Inq)" = (lnq)'"+", we get the recursion formula 

and finally obtain 

bi 7") = C ( i h  - i k + l +  I)-] 
O=i,<i. -,<...<il<in=i k 0  

Using repeatedly the decomposing relation 

1 + 
i h  - i k + ]  f 1 f l  - k + i k + l  

1 
(G - ix+~ + I)(n - k + & + I )  

- - 

and the recursion method, one can prove 6:' =by ' ,  therefore e" = Q.' 

Appendix B 

(A.10) 

(A.l I )  

Lemma. If dL/dt = [ A ,  L] ,  then d(LY/'/dt = [ A ,  Lr/kl. 
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Proof[20]. we set M = Lrlk. It is given that 

[ g - A , L ] = O .  

It is necessary to prove that [d/dt - A ,  M ]  = 0. Since M' = L', it follows from (B.1) that 

On the other hand, 
k 

[$-A,M"] = Z M ' - ' [ $ - A . M ] M ~ - ~ .  63.3) 

It is easy to see that the leading coefficient on the right side of (B.3) is larger than the 
leading coefficient of [d/dt - A ,  MI = 0 by a factor of k. Tberefore, the assumption that 
[d/dt - A, MI # 0 contradicts (B.2). 

Proposition B. If 
aL 
-= [M+, Ll 
at 

aL 
, a t  

M = Cc,L' / '  

[.&i+, L] M = CZiL' / '  

and 

-= 

then 
azL a2L 
star arat '  
_-  -- 

Proof [20]. We have 

According to Lemma 

(5.3) 

(5.4) 

15.5) 

Thus, 

(B.6a) 

Similarly, 

"E) at ar = [W+, nil+. Ll + [G+, tM+, LII. @5b) 

Using the Jacobi identity, we obtain 

"(")-A(") at as = ~ ~ ~ + , M l + - ~ M + . M l + + [ M + , l l j + l , L l  ar at  
but 

[*+, MI+ = [M, k l +  = [M+, ni-1, 

mi,. MI, - [M,, GI+ + [M+, M+'] = 0. 

so that 
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